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What is Tunable Laser Spectroscopy?

What can we measure with TLS?

What goes into making a TLS for planetary missions?
How can we improve, and what could we do then?

What is cavity-enhanced spectroscopy?
What are the design tradeoffs?

What is unique about our design?

How well does the spectrometer perform?
What can we improve in the future?
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Tunable Laser Spectroscopy
Overview



What is TLS?

Tunable Laser Spectroscopy (TLS) uses the attenuation of

narrow-band laser light to achieve sensitive, selective

detection of molecules over a wide range of pressures.
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What can we measure?

We can measure molecules that are:
- Between 2 and 12 atoms in size (more if rigid, like benzene)
* Present at parts-per-billion volume or greater (ppb wt for solids)
* In the gas phase, or can be vaporized

TLS can:

* Easily distinguish species of similar mass — e.g. C130160Q16
from C?201%0" and C*?H, from O1°

* Provide highly localized measurements
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What are the real-world applications?

Earth Science:

* Observe water transport through tropopause / stratosphere via
ISotopic measurements

- Measure methane / CO, isotope fluxes to localize and quantify
sources and sinks

* Monitor concentrations of reactive species (halogen compounds,
NO, OH) and ozone

« Monitor emission of volcanic gases
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What are the real-world applications?

Planetary Science:

* Isotope ratio studies of various compounds — CO,, H,0O, CH,,
PH;, NH;, SO, — as tracers of solar system formation, geological
and atmospheric processes of each body

- Localized mixing ratios for atmospheric layers or near sites of
geological or atmospheric activity

- Detection of trace quantities of biologically-relevant gases in
atmosphere or processed samples
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What are the real-world applications?

Miscellaneous:
- Laboratory measurements in support of astronomy
« Observations of combustion chemistry / physics
 Breath analysis for medical diagnostics

- Safety monitoring for mining, drilling, and manufacturing
iIndustries
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What is TLS?
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What is TLS?

Absorption
Absorption cross-section (cm?) coefficient (cm?)
A —3s i p l Path length (cm) O=0 p

Volume density (cm3)

Noise-equivalent absorption (NEA):

Absorption signal equal to one standard deviation of the
absorption measurement.

 Detector and shot noise

- Laser wavelength and intensity fluctuations
« Mechanical and thermal perturbations

- Etalons / fringing
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What is TLS?
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What is TLS?
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What is TLS?
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What is TLS?
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What is TLS?
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What is TLS?
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What does a TLS system look like?

Gas Intake

Spectrometer

Exhaust
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What does a TLS system look like?

Gas Intake
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What does a TLS system look like?

Spectrometer

Optical Cell
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Detector

Control and Data
Acquisition Electronics
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What does a TLS system look like?
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Example: SAM suite on Curiosity
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Example: SAM suite on Curiosity
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Example: SAM suite on Curiosity
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What can we improve?

We can increase path length.
We can decrease noise.
We can decrease size / weight of instrument.

We can decrease sample volume / gas handling requirements.
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What new science goals can we enable?

We can measure low-abundance targets without pre-
concentration, such as methane on Mars or clumped isotopes.

We can measure difficult-to-collect samples, such as water vapor
from comets or plumes on Enceladus.

We can operate in atmospheres containing difficult-to-pump
balance gases, such as helium on Saturn.
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Cavity Enhanced
Spectroscopy



What is cavity-enhanced spectroscopy?

Cavity-enhanced spectroscopy uses an optical resonator to let

light traverse the same path thousands of times, dramatically
Increasing path length.
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What is cavity-enhanced spectroscopy?
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Cavity resonance conditions

L. = Cavity Length

i =

A = Wavelength

Resonance condition: L=—
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Cavity resonance conditions
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What is cavity-enhanced spectroscopy?
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What is cavity-enhanced spectroscopy?

==

Off-Axis Injection:

Injecting light at an offset from the center of the mirrors
Increases distance traveled before beam overlaps (reentrance).

« Decreases FSR, noise from inconsistent coupling
* Does NOT increase EPL — still limited by mirror R
* Requires larger mirrors than axial configurations
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What is cavity-enhanced spectroscopy?
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Alternate approach: Ringdown spectroscopy
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Alternate approach: Ringdown spectroscopy
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Comparison of CEAS techniques

NICE-OHMS
+ Best laboratory performance, not field-ready

OA-ICOS
« Good laboratory performance, best field performance
 Large mirrors — large sample volume
- Significant performance loss if cavity is shortened

CRDS
- Best laboratory performance, good field performance
« Small mirrors — small sample volume

« Can be short (10 cm), but needs piezo actuators to account for
large FSR
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Design tradeoffs: Mirror reflectivity

 Higher reflectivity mirrors give longer effective path length, but
make coupling more challenging

 Avallable reflectivity varies by wavelength — best at telecom
bands (>99.999%), worst in UV / thermal IR (>99.97%)

12 cm _ 100
1-09997 - M
12 cm
= 12,000 m

1—-0.99999
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Design tradeoffs: Cavity length

» Challenging to measure t < 1 us; for 99.97% mirrors, minimum
cavity length = 10 cm

- Longer cavity more sensitive, but larger volume and may be
difficult to fit in small spacecraft

- Longer cavity gives better FSR — could do without piezos in a
large instrument, not practical for compact instruments
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Design tradeoffs: Triggering method

Acousto-optic modulator:
+ Fast response, does not perturb laser
- High power, water cooled

Semiconductor optical amplifier:
+ Fast response, does not perturb laser
 Limited wavelength availability

Laser current modulation:

+ Slower response, laser requires re-stabilization period
* No extra equipment, available for all semiconductor lasers
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Prototype Water Analyzer Overview
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Cell design

12 cm mirror separation
630 m EPL

Mirrors masked to 5mm g
2.35 cc probed volume
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Cell design: Plano-concave cavity

v
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Cell design
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FPGA system

FPGA

* Modulates laser
Modulates piezo
Interfaces with ADC
Detects & triggers RDs

Records RDs &
metadata

Passes data to CPU

CPU

» Sets laser scan
parameters

 “Locks” piezo range

 Fits RDs to exponential
function

- Controls fringe
cancellation system

* Writes spectrum &
metadata to file
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Fringe cancellation
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Fringe cancellation
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Spectrometer performance
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Spectrometer performance
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Spectrometer performance
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Spectrometer performance
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Spectrometer performance
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Cell Pressure 1 mbar
H,O Partial Pressure 45 pbar
Temperature ~294 K
Scan Time 50 s
Laser Power 10 mW
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What can we improve in the future?
- Demonstrate performance at other wavelengths
* Currently working on methane measurements at 3.27um

- Demonstrate reliability in field settings — UAV measurements

* Need to design and build second-generation cell, miniaturized
electronics

 Find source for semiconductor optical amplifiers at non-
telecom wavelengths
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